Minimizers for a Double-well Problem with Affine Boundary Conditions
نویسنده
چکیده
This paper is concerned with the existence of minimizers for functionals having a double-well integrand with affine boundary conditions. Such functionals are related to the so-called Kohn-Strang functional which arises in optimal shape design problems in electrostatics or elasticity. They are known to be not quasi-convex, and therefore existence of minimizers is, in general, guaranteed only for their quasi-convex envelopes. We generalize previous results in [1] and give necessary and sufficient conditions on the affine boundary conditions for existence of minimizers. Our method relies on the computation of the quasiconvexification of these functionals by using homogenization theory. We also prove by a general argument that their rank-one convexifications coincide with their quasi-convexifications.
منابع مشابه
Characterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملAbout One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions
In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...
متن کاملSize of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions
The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate model between the full Ginzburg-Landau equations, which make appear both a condensate wave function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the condensate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic potential. The boundary data...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملThe Partially Free Boundary Problem for Parametric Double Integrals
We prove the existence of conformally parametrized minimizers for parametric two-dimensional variational problems subject to partially free boundary conditions. We establish regularity of class H loc ∩C1,α, 0 < α < 1, up to the free boundary under the assumption that there exists a perfect dominance function in the sense of C.B. Morrey. Mathematics Subject Classification (2000): 49J45, 49Q10, 4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015